Workshop

Reinforcement Learning

Overview

Introduction to RL

Reinforcement learning in context

Practical implementation: Q-learning

Reinforcement learning in context

Examples

https://deepmind.com/blog/article/alphago-zero-starting-scratch

ARTIFICIAL INTELLIGENCE

Early artificial intelligence stirs excitement.

STATISTY .

TIN

1960's

1970's

1950's

MACHINE LEARNING

1990's

1980's

Machine learning begins to flourish.

DEEP LEARNING

2010's

2000's

Deep learning breakthroughs drive AI boom.

Overview learning algorithms

Supervised

Inputs with corresponding labels Answers are provided Task driven

Unsupervised

Corresponding labels are not provided Data driven (clustering)

Reinforcement

Take the best actions in an environment to maximize rewards

What is reinforcement learning?

What is reinforcement learning?

https://www.youtube.com/watch?v=4MIZncshy1Q

https://www.youtube.com/watch?v=eG1Ed8PTJ18

Examples

https://www.youtube.com/watch?v=ZBFwe1gF0FU

Examples

https://www.youtube.com/watch?v=VCdxqn0fcnE

https://www.youtube.com/watch?v=opsmd5yuBF0

Reinforcement learning in humans

Examples

VIRTUAL ROBOTS SUMO WRESTLE

Т

Reinforcement learning terminologies

Reinforcement learning taxonomy

- **: discussed in this book
- 1. A2C: Advantage Actor-Critic
- 2. A3C: Asynchronous Advantage Actor-Critic
- 3. GAE: Actor-Critic with Generalized Advantage Estimation

What is Q-learning?

- The objective of Q-learning is to find a policy that is optimal in the sense that the expected value of the total reward over all successive steps is the maximum achievable.
- The goal of Q-learning is to find the optimal policy by learning the optimal Q-values for each state-action pair.
- The Q-learning algorithm iteratively updates the Q-values for each state-action pair using the Bellman equation until the Q-function converges to the optimal Q-function, q*. This approach is called value iteration.
- Q-learning converges to optimal Q-values if all states are visited by the agent for an infinite amount of times.
- Q-learning is off-policy

Updating the Q-values

Example

The goal for the robot (agent) is to **find the exit**:

1 step = -10 points.

Charging = + 10 points.

Reaching the exit = +100 points and episode ends.

Stepping on a landmine = -100 points and episode ends.

For the purpose of the example the robot will only explore the environment (= only taking random actions) and not yet exploit it's knowledge of the environment.

Q-table

Q-table

	Left	Right	Up	Down
Charging	Х		Х	
Empty cel 1			Х	
Empty cel 2		Х	Х	
Empty cel 3	Х			
Land mine	Х	Х	Х	Х
Empty cel 4		Х		
Start	Х			Х
Empty cel 5				Х
Exit	Х	Х	Х	Х

Q-table initialization (with zeros)

Q-table

	Left	Right	Up	Down
Charging	Х	0	Х	0
Empty cel 1	0	0	Х	0
Empty cel 2	0	Х	Х	0
Empty cel 3	Х	0	0	0
Land mine	Х	Х	Х	Х
Empty cel 4	0	Х	0	0
Start	Х	0	0	Х
Empty cel 5	0	0	0	Х
Exit	Х	Х	Х	Х

Agent is taking a random action

Q-table				
	Left	Right	Up	Down
Charging	Х	0	Х	0
Empty cel 1	0	0	Х	0
Empty cel 2	0	Х	Х	0
Empty cel 3	Х	0	0	0
Land mine	Х	Х	Х	Х
Empty cel 4	0	Х	0	0
Start	Х	0	0	Х
Empty cel 5	0	0	0	Х
Exit	Х	Х	Х	Х

Robot takes random action 'up'

From 'starting state' to state 'empty cell 3'

Updating the Q-values with α =0.7 and γ =0.8:

$$Q(s_t, a_t) = (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \cdot (r_t + \gamma \cdot \max_Q(s_{t+1}, a))$$

= (1 - 0.7) \cdot 0 + 0.7 \cdot (-10 + 0.8 \cdot 0)
= -7

Updating the Q-table

Q-table

	Left	Right	Up	Down
Charging	Х	0	Х	0
Empty cel 1	0	0	Х	0
Empty cel 2	0	Х	Х	0
Empty cel 3	Х	0	0	0
Land mine	Х	Х	Х	Х
Empty cel 4	0	Х	0	0
Start	Х	0	-7	Х
Empty cel 5	0	0	0	Х
Exit	Х	Х	Х	Х

Agent is taking a random action

Robot takes random action 'right'

From state 'empty cell 3' to state 'landmine'

Updating the Q-values with α =0.7 and γ =0.8:

$$Q(s_t, a_t) = (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \cdot (r_t + \gamma \cdot \max_Q(s_{t+1}, a))$$

= (1 - 0.7) \cdot 0 + 0.7 \cdot ((-10 - 100) + 0.8 \cdot 0)
= -77

Q-table				
	Left	Right	Up	Down
Charging	Х	0	Х	0
Empty cel 1	0	0	Х	0
Empty cel 2	0	Х	Х	0
Empty cel 3	Х	0	0	0
Land mine	Х	Х	Х	Х
Empty cel 4	0	Х	0	0
Start	Х	0	-7	Х
Empty cel 5	0	0	0	Х
Exit	Х	Х	Х	Х

Updating the Q-table

Q-table

	Left	Right	Up	Down
Charging	Х	0	Х	0
Empty cel 1	0	0	Х	0
Empty cel 2	0	Х	Х	0
Empty cel 3	Х	-77	0	0
Land mine	Х	Х	Х	Х
Empty cel 4	0	Х	0	0
Start	Х	0	-7	Х
Empty cel 5	0	0	0	Х
Exit	Х	Х	Х	Х

END OF THE EPISODE

Start new episode

Q-table

	Left	Right	Up	Down
Charging	Х	0	Х	0
Empty cel 1	0	0	Х	0
Empty cel 2	0	Х	Х	0
Empty cel 3	Х	-77	0	0
Land mine	Х	Х	Х	Х
Empty cel 4	0	Х	0	0
Start	Х	0	-7	Х
Empty cel 5	0	0	0	Х
Exit	Х	Х	Х	Х

Agent is taking a random action

Robot takes random action 'up'

From 'starting state' to state 'empty cell 3'

Updating the Q-values with α =0.7 and γ =0.8:

$$Q(s_t, a_t) = (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \cdot (r_t + \gamma \cdot \max_Q(s_{t+1}, a))$$

= (1 - 0.7) \cdot (-7) + 0.7 \cdot (-10 + 0.8 \cdot \max(-77; 0; 0))
= 0.3 \cdot (-7) + 0.7 \cdot (-10 + 0.8 \cdot 0)
= -9.1

Q-table					
	Left	Right	Up	Down	
Charging	Х	0	Х	0	
Empty cel 1	0	0	Х	0	
Empty cel 2	0	Х	Х	0	
Empty cel 3	Х	-77	0	0	
Land mine	Х	Х	Х	Х	
Empty cel 4	0	Х	0	0	
Start	Х	0	-7	Х	
Empty cel 5	0	0	0	Х	
Exit	Х	Х	Х	Х	

Updating the Q-table

Q-table

	Left	Right	Up	Down
Charging	Х	0	Х	0
Empty cel 1	0	0	Х	0
Empty cel 2	0	Х	Х	0
Empty cel 3	Х	-77	0	0
Land mine	Х	Х	Х	Х
Empty cel 4	0	Х	0	0
Start	Х	0	-9.1	Х
Empty cel 5	0	0	0	Х
Exit	Х	Х	Х	Х

Agent is taking a random action

Robot takes random action 'up'

From 'empty cell 3' to state 'charging'

Updating the Q-values with α =0.7 and γ =0.8:

$$Q(s_t, a_t) = (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \cdot (r_t + \gamma \cdot \max_Q(s_{t+1}, a))$$

= (1 - 0.7) \cdot 0 + 0.7 \cdot (-10 + 10 + 0.8 \cdot \max(0; 0))
= 0.3 \cdot (-7) + 0.7 \cdot (0 + 0.8 \cdot 0)
= -2.1

Q-table					
	Left	Right	Up	Down	
Charging	Х	0	Х	0	
Empty cel 1	0	0	Х	0	
Empty cel 2	0	Х	Х	0	
Empty cel 3	Х	-77	0	0	
Land mine	Х	Х	Х	Х	
Empty cel 4	0	Х	0	0	
Start	Х	0	-9.1	Х	
Empty cel 5	0	0	0	Х	
Exit	Х	Х	Х	Х	

Updating the Q-table

Q-table

	Left	Right	Up	Down
Charging	Х	0	Х	0
Empty cel 1	0	0	Х	0
Empty cel 2	0	Х	Х	0
Empty cel 3	Х	-77	-2.1	0
Land mine	Х	Х	Х	Х
Empty cel 4	0	Х	0	0
Start	Х	0	-9.1	Х
Empty cel 5	0	0	0	Х
Exit	Х	Х	Х	Х

Agent is taking a random action

Q-table					
	Left	Right	Up	Down	
Charging	Х	0	Х	0	
Empty cel 1	0	0	Х	0	
Empty cel 2	0	Х	Х	0	
Empty cel 3	Х	-77	-2.1	0	
Land mine	Х	Х	Х	Х	
Empty cel 4	0	Х	0	0	
Start	Х	0	-9.1	Х	
Empty cel 5	0	0	0	Х	
Exit	Х	Х	Х	Х	

Robot takes random action 'right'

From 'charing' to state 'empty cell 1'

Updating the Q-values with α =0.7 and γ =0.8:

$$Q(s_t, a_t) = (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \cdot (r_t + \gamma \cdot \max_Q(s_{t+1}, a))$$

= (1 - 0.7) \cdot 0 + 0.7 \cdot (-10 + 0.8 \cdot \max(0; 0; 0))
= 0 + 0.7 \cdot (-10 + 0.8 \cdot 0)
= -7

Updating the Q-table

Q-table Right Left Up Down Charging Х Х -7 0 Empty cel 1 0 Х 0 0 Empty cel 2 0 Х Х 0 Empty cel 3 Х -77 -2.1 0 Land mine Х Х Х Х 0 Empty cel 4 Х 0 0 Start Х -9.1 Х 0 Х Empty cel 5 0 0 0 **Exit** Х Х Х Х

Agent is taking a random action

Q-table						
	Left	Right	Up	Down		
Charging	Х	-7	Х	0		
Empty cel 1	0	0	Х	0		
Empty cel 2	0	Х	Х	0		
Empty cel 3	Х	-77	-2.1	0		
Land mine	Х	Х	Х	Х		
Empty cel 4	0	Х	0	0		
Start	Х	0	-9.1	Х		
Empty cel 5	0	0	0	Х		
Exit	Х	Х	Х	Х		

Robot takes random action 'Down'

From 'empty cell 1' to state 'landmine'

Updating the Q-values with α =0.7 and γ =0.8:

$$Q(s_t, a_t) = (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \cdot (r_t + \gamma \cdot \max_Q (s_{t+1}, a))$$

= (1 - 0.7) \cdot 0 + 0.7 \cdot (-10 - 100 + 0.8 \cdot 0)
= 0 + 0.7 \cdot (-110)
= -77

Updating the Q-table

Q-table Left Right Up Down Charging Х -7 Х 0 -77 Empty cel 1 0 0 Х Empty cel 2 0 Х Х 0 Empty cel 3 Х -77 -2.1 0 Land mine Х Х Х Х Empty cel 4 0 Х 0 0 Х 0 -9.1 Х Start Empty cel 5 0 0 0 Х Exit Х Х Х Х

END OF THE EPISODE

Suppose after many episode we end up with the following Q-table

Q-table						
	Left	Right	Up	Down		
Charging	Х	1.4	Х	-6.4		
Empty cel 1	-0.4	8.0	Х	-86.7		
Empty cel 2	-4.2	Х	Х	16.3		
Empty cel 3	Х	-86.4	7.1	-0.48		
Land mine	Х	Х	Х	Х		
Empty cel 4	-82.9	Х	-8.7	78.4		
Start	Х	32.4	18.9	Х		
Empty cel 5	-8.4	89.1	-86.7	Х		
Exit	Х	Х	Х	Х		

During exploitation the agent will follow the state-actions with the highest Q-values: Start -> Empty cell 5 -> Exit

Cliff walking problem

- Q-learning will converge to the optimal path (but also more risky path)
- SARSA will converge to the safest path

